Fit Details
Objective function, parameterization, and a reproducible calculator for the charged-lepton calibration.

Model

We evaluate $M_{\text{topo}}$ on eigenvalues $(N,w,T)$: $$M_{\text{topo}}(N,w,T)=\Lambda_c\,e^{\lambda_c N}+\alpha_c\,w+\kappa_c\,T^2.$$ The charged-lepton labels used here are $e:(1,1,1)$, $\mu:(3,0,2)$, $\tau:(5,-1,3)$.

Objective

We use a simple least-squares objective with unit weights: $$J(\Lambda_c,\alpha_c,\kappa_c\mid\lambda_c) =\sum_{\ell\in\{e,\mu,\tau\}}\big(M_{\text{topo}}(N_\ell,w_\ell,T_\ell)-m_\ell\big)^2.$$ At fixed $\lambda_c$, the best fit is obtained by minimizing $J$ over $(\Lambda_c,\alpha_c,\kappa_c)$.
Lepton(N, w, T)Observed [MeV]Predicted [MeV]Residual [MeV]
electron (e)(1,1,1)0.5109990.510962-0.000037
muon (μ)(3,0,2)105.658376105.6593800.001004
tau (τ)(5,-1,3)1776.8600001776.8624230.002423
Sum of squared errors0.000007

Hold-out check

A simple cross-check is to solve $(\Lambda_c,\alpha_c,\kappa_c)$ from $(e,\mu)$ only and predict $\tau$. This UI does not solve the inverse problem, but you can verify sensitivity by perturbing the parameters and observing the $\tau$ residual. For a full inverse solver, we can add a closed-form routine derived from Appendix F equations upon request.