From Topological Tuples to Unification: UV Derivation of a ℤ³ Flavor Lattice, SO(10)→LR→SM Gauge Unification, and a Topological Scalar for Testable Gravity

Key Results

  • • UV derivation of ℤ³ tuple lattice from Spin(10)
  • • Closed-form gauge unification: M_I ~ 10¹³⁻¹⁴ GeV, M_GUT ~ 10¹⁶ GeV
  • • Global flavor fit: γ ≃ (2.70, 0.20, 0.30)
  • • Testable Yukawa gravity in "Goldilocks" band

Framework Components

  • • Cartan/center map: χ₃, χ₂, Y from (N,w,T)
  • • Three-slope magnitude geometry
  • • Phase slopes from PMNS rephasing invariants
  • • Topological scalar with m_φ ~ M_I

Abstract

We complete the new elements of our framework since the last publication: (i) a UV microfoundation deriving a ℤ³ tuple lattice (N,w,T) from the Spin(10) Cartan/center structure coupled to a compact BF sector; (ii) a closed-form one-loop and refined two-loop gauge unification analysis for the breaking chainSO(10)→SU(3)_C×SU(2)_L×SU(2)_R×U(1)_{B-L}→SM (Case B minimal spectrum), yielding M_I ~ 10¹³⁻¹⁴ GeV, M_GUT ~ 10¹⁶ GeV with modest thresholds, and α_G⁻¹ ~ 43.5; (iii) a global flavor fit fixing the three magnitude slopes γ ≃ (2.70,0.20,0.30) and phase slopes γ_φ ≃ (0.10,0.712,0.712) that reproduce CKM/PMNS angles and mass ratios; (iv) a topological scalar tied to the 4-form dual at M_I producing a short-range Yukawa correction to Newtonian gravity (the "Goldilocks" band), consistent with Cassini PPN and laboratory fifth-force bounds.

\documentclass[12pt]{article}
\usepackage[a4paper,margin=1in]{geometry}
\usepackage{amsmath,amssymb,mathtools,bm}
\usepackage{siunitx}
\usepackage{hyperref}
\usepackage{pgfplots}
\pgfplotsset{compat=1.18}
\usepackage{graphicx}
\usepackage{booktabs}
\usepackage{physics}

\title{From Topological Tuples to Unification: \\
UV Derivation of a $\mathbb{Z}^3$ Flavor Lattice, \\
SO(10)$\to$LR$\to$SM Gauge Unification, \\
and a Topological Scalar for Testable Gravity}
\author{Dustin Beachy}
\date{\today}

\newcommand{\Mpl}{M_{\rm P}}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\GN}{G_{\!N}}
\newcommand{\aY}{\alpha_y}
\newcommand{\lam}{\lambda}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\B}{B}
\newcommand{\L}{L}

\begin{document}
\maketitle

\begin{abstract}
We complete the new elements of our framework since the last publication: (i) a UV microfoundation
deriving a $\mathbb{Z}^3$ tuple lattice $(N,w,T)$ from the $\mathrm{Spin}(10)$ Cartan/center structure coupled to a compact $BF$ sector; (ii) a closed-form one-loop and refined two-loop gauge unification analysis for the breaking chain $\mathrm{SO(10)}\to \mathrm{SU(3)_C}\times\mathrm{SU(2)_L}\times\mathrm{SU(2)_R}\times \mathrm{U(1)_{B-L}}\to \mathrm{SM}$ (Case~B minimal spectrum), yielding $M_I \sim 10^{13\text{–}14}\,\mathrm{GeV}$, $M_{\rm GUT}\sim 10^{16}\,\mathrm{GeV}$ with modest thresholds, and $\alpha_G^{-1}\sim 43.5$; (iii) a global flavor fit fixing the three magnitude slopes $\bm{\gamma}\simeq(2.70,0.20,0.30)$ and phase slopes $\bm{\gamma}_{\phi}\simeq(0.10,0.712,0.712)$ that reproduce CKM/PMNS angles and mass ratios; (iv) a topological scalar tied to the 4-form dual at $M_I$ producing a short-range Yukawa correction to Newtonian gravity (the \`\`Goldilocks'' band), consistent with Cassini PPN and laboratory fifth-force bounds. We provide desk-only falsifiers and full LaTeX figure scaffolds. 
\end{abstract}

\section{Introduction}
We unify three historically separate strands: (A) a three-slope flavor geometry for magnitudes and phases; (B) a UV-complete derivation of a $\Z^3$ flavor tuple lattice from the Cartan and centers of $\mathrm{Spin}(10)$ via a compact topological $BF$ sector; (E) controlled two-loop gauge unification in a minimal non-supersymmetric $\mathrm{SO(10)}\to$LR$\to$SM chain; and (D) a short-range scalar–tensor gravity module whose mass originates in the same topological sector (4-form dual), while remaining modular and safe under current tests. The tuple/Cartan map is unique, kernel generators implement family translations, anomaly cancellation remains SM-like, and the global data sweep fixes the small parameter set $(\bm{\gamma},\bm{\gamma}_\phi,$ offsets) against CKM/PMNS and mass ratios. The result is a compact, falsifiable, and UV-anchored structure.

\end{document}