From Topology to Tuples: Deriving the ℤ³ Flavor Lattice
SM Charges, Three-Slope Geometry, CP Phases, Neutrino Invariants, and a Testable Yukawa Gravity Module
We give a complete derivation and validation pipeline for a unified, minimal framework that links (i) a ℤ³ topological tuple lattice with a primitive family step g=(2,-1,1), (ii) canonical homomorphisms to SU(3) color and SU(2) weak representations and an affine hypercharge functional Y=(aN+bw+cT+d)/6 with 2a-b+c=0 reproducing all SM charges, (iii) a three-slope magnitude geometry for flavor overlaps, (iv) a CP-phase extension with linear phase slopes, (v) neutrino sector falsifiers expressible directly in terms of PMNS inputs, and (vi) a short-range Yukawa gravity module arising from a hidden topological susceptibility.
All map-building steps are proven in detail (Smith normal form, anomaly consistency, lattice minimality, GL(3,ℤ) covariance, positivity of slopes in a canonical chamber). The CP layer is fixed by the CKM phase and a non-additive phase invariant, with the down-sector phase triangle closing exactly.
\documentclass[11pt]{article} \usepackage[a4paper,margin=1in]{geometry} \usepackage{amsmath,amssymb,mathtools,amsthm} \usepackage{bm} \usepackage{physics} \usepackage{siunitx} \usepackage{microtype} \usepackage{hyperref} \usepackage{cleveref} \usepackage{pgfplots} \pgfplotsset{compat=1.18} \title{From Topology to Tuples: Deriving the $\mathbb{Z}^3$ Flavor Lattice,\\ SM Charges, Three-Slope Geometry, CP Phases,\\ Neutrino Invariants, and a Testable Yukawa Gravity Module} \author{} \date{\today} % --- Shortcuts --- \newcommand{\Z}{\mathbb{Z}} \newcommand{\R}{\mathbb{R}} \newcommand{\Mpl}{M_{\rm P}} \newcommand{\GN}{G_{\!N}} \newcommand{\dd}{\mathrm{d}} \newcommand{\alphaY}{\alpha_y} \newcommand{\lamY}{\lambda} \newcommand{\vect}[1]{\bm{#1}} \newcommand{\T}{\mathrm{T}} % --- Theorem environments --- \theoremstyle{plain} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \begin{document} \maketitle \begin{abstract} We give a complete derivation and validation pipeline for a unified, minimal framework that links (i) a $\Z^3$ topological tuple lattice with a primitive family step $\vect g=(2,-1,1)$, (ii) canonical homomorphisms to $\mathrm{SU}(3)$ color and $\mathrm{SU}(2)$ weak representations and an affine hypercharge functional $Y=(aN+bw+cT+d)/6$ with $2a-b+c=0$ reproducing all SM charges, (iii) a three-slope magnitude geometry for flavor overlaps, (iv) a CP-phase extension with linear phase slopes, (v) neutrino sector falsifiers expressible directly in terms of PMNS inputs, and (vi) a short-range Yukawa gravity module arising from a hidden topological susceptibility. All map-building steps are proven in detail (Smith normal form, anomaly consistency, lattice minimality, GL$(3,\Z)$ covariance, positivity of slopes in a canonical chamber). The CP layer is fixed by the CKM phase and a non-additive phase invariant, with the down-sector phase triangle closing exactly. We provide a \emph{desk-only} neutrino invariants workflow: given PMNS angles and mass splittings (NuFIT inputs provided by the reader), the combinations \[K^{(\nu)}=\ln|M_{e\tau}|-\tfrac12\big(\ln|M_{e\mu}|+\ln|M_{\mu\tau}|\big),\quad K_\phi^{(\nu)}=\arg M_{e\tau}-\tfrac12\big(\arg M_{e\mu}+\arg M_{\mu\tau}\big)\] are computed and compared to the tuple predictions. The gravity module, independent of flavor slopes, predicts a Newton--Yukawa correction $V(r)=-\GN m_1m_2\,r^{-1}[1+\alphaY e^{-r/\lamY}]$, with a falsifiable decimeter-range "Goldilocks" target band consistent with solar-system PPN and sub-mm results. All experimental statements are grounded in established literature (Cassini PPN, Eöt-Wash torsion balances, micro-cantilevers, and sub-mm updates), with a figure scaffold for overlaying digitized exclusion contours. \end{abstract} \tableofcontents % ============================================================ \section{Goals, scope, and axioms}\label{sec:intro} We derive a \emph{single} $\Z^3$ tuple scheme linking hidden topology to SM charges and flavor geometry, then extend to CP phases and neutrino falsifiers and append a testable Yukawa gravity module. The program rests on minimal axioms: \paragraph{A1 (Integer invariants).} Physical excitations carry a triple of integers $\bm\tau=(N,w,T)\in\Z^3$ (e.g., linking, twist parity, writhe-like indices). \paragraph{A2 (Additive composition).} Composition of worldlines/worldsheets adds invariants: $\bm\tau_{ij}=\bm\tau_i+\bm\tau_j$. \paragraph{A3 (Family step).} There is a primitive \emph{family step} $\vect g\in\Z^3$ such that $(\chi_3,\chi_2)$ (color/weak maps) and hypercharge $Y$ are preserved under $\bm\tau\mapsto\bm\tau+k\vect g$. \paragraph{A4 (Convex locality for magnitudes).} Overlap magnitudes follow a linear functional $\vect\gamma\in\R^3$ with $\vect\gamma$ in a convex physical chamber (defined below): $\ln|\rho_{ij}|=(u_i+u_j)-\Delta_{ij}\cdot\vect\gamma$. We show that these axioms suffice to reconstruct SM representations and charges, derive the three-slope law, and produce falsifiable invariants. % ============================================================ \section{Two microfoundations for the $\Z^3$ lattice}\label{sec:micro} We give two independent routes that both yield the same $\Z^3$ structure and family step. \subsection{Route I: Framed braid/ribbon category} Objects are ribbon types with labels $(N,w,T)$. 1-morphisms are framed braids; 2-morphisms are Reidemeister moves and framing shifts. Standard knot-theoretic arguments give: \begin{lemma}[Integer and additivity]\label{lem:braid} $N,w,T\in\Z$ and are additive under disjoint union/concatenation. \end{lemma} \noindent The family translation emerges as a primitive relabeling that keeps the gauge projections (defined in \S\ref{sec:maps}) unchanged; see \S\ref{sec:family-step} for a minimality proof tied to hypercharge invariance. \subsection{Route II: 4-form/BF TQFT} Consider three compact 2-form gauge fields $B^N,B^w,B^T$ with integer periods; Dirac quantization yields a $\Z^3$ lattice of charges. Large gauge shifts generate a one-dimensional kernel common to color, weak, and hypercharge maps: \begin{lemma}[Quantization and family kernel]\label{lem:BF} Periods define $\Z^3$. Large gauge transformations produce a primitive vector $\vect g$ left invariant by the gauge projections and hypercharge functional. \end{lemma} The two routes agree on the existence of a $\Z^3$ lattice and a primitive invariant family step. The rest of the paper fixes these objects canonically and proves their properties. % ============================================================ \section{Canonical maps to SM structure}\label{sec:maps} \subsection{Color and weak projections via Smith normal form} Let $\chi_3,\chi_2:\Z^3\to\Z/3\Z,\Z/2\Z$ be homomorphisms encoding $\mathrm{SU}(3),\mathrm{SU}(2)$ representations. \begin{theorem}[Canonical projections]\label{thm:canonical} There exists a $\mathrm{GL}(3,\Z)$ basis of $\Z^3$ in which \[\boxed{\ \chi_3(N,w,T)=N+T \ \mathrm{mod}\ 3,\qquad \chi_2(N,w,T)=w+T \ \mathrm{mod}\ 2\ }.\] \end{theorem} \begin{proof}[Sketch (full proof in App.~\ref{app:SNF})] Every homomorphism $\Z^3\to\Z/n\Z$ corresponds to a row vector modulo $n$. The simultaneous reduction to the displayed form follows from the Smith normal form of the $2\times3$ integer matrix representing $(\chi_3,\chi_2)$, plus the Chinese Remainder Theorem. \end{proof} \subsection{Affine hypercharge functional} We take \begin{equation}\label{eq:Y} Y(N,w,T)=\frac{aN+bw+cT+d}{6},\qquad 2a-b+c=0, \end{equation} with integer $(a,b,c,d)$ chosen to match SM hypercharges for a set of \emph{anchors} (one representative of each SM representation). The kernel condition $2a-b+c=0$ ensures consistency with weak/color structure (App.~\ref{app:SNF}). \begin{theorem}[SM hypercharges from tuples]\label{thm:Y} For the anchor set in \S\ref{sec:anchors}, the unique integer solution is \[\boxed{\ (a,b,c,d)=(4,9,1,-12)\ },\] so that $Y=(4N+9w+T-12)/6$ reproduces all SM hypercharges. \end{theorem} \begin{proof}[Derivation in full] See App.~\ref{app:Ysolve}. We solve a seven-equation Diophantine system (6 anchor equations + $2a-b+c=0$) and obtain the above integer quadruple. Uniqueness follows from the rank of the linear system. \end{proof} \subsection{Anomaly cancellation} Per generation, the standard SM anomaly sums vanish. Since our maps reproduce exactly the SM hypercharges and representations, the anomaly polynomials cancel identically (see App.~\ref{app:anomalies} for explicit $[SU(3)]^2U(1)_Y$, $[SU(2)]^2U(1)_Y$, $[U(1)_Y]^3$, and mixed gravitational anomalies). % ============================================================ \section{Family step $\vect g$ and its minimality}\label{sec:family-step} We require $\vect g$ to preserve \emph{all} gauge data across families: \[\chi_3(\vect g)\equiv 0 \mod 3,\quad \chi_2(\vect g)\equiv 0 \mod 2,\quad (a,b,c)\cdot \vect g=0,\] the last equality enforcing \emph{exact} hypercharge equality across generations. \begin{proposition}[Primitive minimal family step]\label{prop:g} The primitive integer solutions with minimal Euclidean norm are $\pm\vect g=\pm(2,-1,1)$ (norm $\sqrt{6}$). Any other primitive solution has strictly larger norm. \end{proposition} \begin{proof} We solve the congruences $N{+}T\equiv0\,(3)$ and $w{+}T\equiv0\,(2)$ together with the exact kernel condition $4N+9w+T=0$ (from \Cref{thm:Y}). A short lattice-reduction/Diophantine analysis (App.~\ref{app:g-min}) yields the primitive lattice generated by $(2,-1,1)$ and its negative; an exhaustive search over $|N|,|w|,|T|\le4$ confirms minimality (and rules out putative smaller-norm vectors like $(-1,-1,1)$ by the hypercharge constraint). \end{proof} \begin{remark} GL$(3,\Z)$ changes components of $\vect g$ and $\vect\gamma$ (see \S\ref{sec:GL3}), but physical statements---representations and hypercharge values---are invariant. \end{remark} % ============================================================ \section{Three-slope magnitude geometry}\label{sec:magnitude} \subsection{Law and additive triangles} Let $\Delta_{ij}=\bm\tau_i{-}\bm\tau_j$. The magnitude law is \begin{equation}\label{eq:mag-law} \ln|\rho_{ij}|=(u_i+u_j)-\Delta_{ij}\cdot\vect\gamma,\qquad \vect\gamma=(\gamma_N,\gamma_w,\gamma_T)\in\R^3. \end{equation} Define the \emph{geometry factors} (additive midpoint gauge) \begin{equation}\label{eq:rprime} r'_{ij}=\exp\!\Big(-\Big[\Delta_{ij}-\tfrac12(\Delta_{ik}+\Delta_{kj})\Big]\cdot\vect\gamma\Big), \end{equation} so that for an \emph{additive triple} $(i,k,j)$ with $\Delta_{ij}=\Delta_{ik}+\Delta_{kj}$ we have \[\ln r'_{13}=\ln r'_{12}+\ln r'_{23}\quad\Longleftrightarrow\quad r'_{13}=r'_{12}\,r'_{23}.\] \begin{lemma}[Positivity in a canonical chamber]\label{lem:pos} There exists a canonical basis (the one in \Cref{thm:canonical}) and a convex physical chamber (weights nonnegative in the instanton/dilute limit) in which $\gamma_N,\gamma_w,\gamma_T\ge0$. \end{lemma} \begin{proof} See App.~\ref{app:positivity}. In the canonical basis, contributions to the effective action from the three integer sectors are convex and additive; $\vect\gamma$ are their nonnegative weights. Under GL$(3,\Z)$ the \emph{components} may change sign, but the physical dot products $\Delta\cdot\vect\gamma$ remain invariant (App.~\ref{app:GL3}). \end{proof} \subsection{Canonical slopes and derived quantities} Fix the canonical slopes (from prior fits in the quark sector): \begin{equation}\label{eq:gamma-values} \vect\gamma=(\gamma_N,\gamma_w,\gamma_T)=(0.211071,\ 0.740662,\ 0.457527), \end{equation} and the scalar \begin{equation}\label{eq:S} S=(2,1,1)\cdot\vect\gamma=1.620331. \end{equation} Illustrative predictions used below: \[e^{-S}=0.197848,\qquad e^{-2.077858}=0.12520,\qquad e^{-3.698189}=0.02478.\] These produce the additive-triple equality $r'_{13}=r'_{12}r'_{23}$ for $(2,1,1)+(2,1,2)=(4,2,3)$. % ============================================================ \section{CP-phase extension}\label{sec:CP} \subsection{Phase law and invariants} Extend \eqref{eq:mag-law} to complex overlaps \begin{equation} \rho_{ij}=|\rho_{ij}|\exp\Big(i[\phi_i+\phi_j]+\ i\,\Delta_{ij}\cdot\vect\eta\Big),\qquad \vect\eta=(\eta_N,\eta_w,\eta_T)\in\R^3. \end{equation} Define the phase-analogue of \eqref{eq:rprime}: \begin{equation} \phi'_{ij}=\Big[\Delta_{ij}-\tfrac12(\Delta_{ik}+\Delta_{kj})\Big]\cdot\vect\eta,\quad K_\phi^{(Y)}=\phi'_{13}-\tfrac12(\phi'_{12}+\phi'_{23})=\mathcal{D}_Y\cdot\vect\eta, \end{equation} with $\mathcal{D}_Y=\Delta_{13}-\tfrac12(\Delta_{12}+\Delta_{23})$ (sector-dependent). \subsection{Fixing $\vect\eta$ from CKM and a non-additive invariant} In the canonical quark triples used previously: \[\mathcal{D}_d=(2,1,1),\quad \mathcal{D}_u=(3,1.5,2),\quad \mathcal{D}_X=(4,1,2).\] We impose: \begin{align} K_\phi^{(d)}&=\mathcal{D}_d\cdot\vect\eta=0\qquad\text{(down triangle closure)},\label{eq:down-closure}\\ \delta_{\rm CKM}&=K_\phi^{(u)}-K_\phi^{(d)}=(1,0.5,1)\cdot\vect\eta,\label{eq:ckm}\\ K_\phi^{(X)}&=\mathcal{D}_X\cdot\vect\eta\quad\text{(non-additive phase invariant)}.\label{eq:KphiX} \end{align} Using the working values from the CKM global fits and our internal benchmark: \[\delta_{\rm CKM}=1.131\ \text{rad},\qquad K_\phi^{(X)}=0.500\ \text{rad},\] the linear system \eqref{eq:down-closure}–\eqref{eq:KphiX} yields \begin{equation}\label{eq:eta-solution} \boxed{\ \vect\eta=(-0.881,\ -0.500,\ 2.262)\ }. \end{equation} Consistency checks: \[K_\phi^{(d)}=(2,1,1)\cdot\vect\eta=0,\quad K_\phi^{(u)}=(3,1.5,2)\cdot\vect\eta=1.131,\quad K_\phi^{(X)}=(4,1,2)\cdot\vect\eta=0.500.\] % ============================================================ \section{GL$(3,\Z)$ covariance and example}\label{sec:GL3} A change of tuple basis $\bm\tau\mapsto A\bm\tau$, $A\in\mathrm{GL}(3,\Z)$, induces $\Delta\mapsto A\Delta$ and $\vect\gamma\mapsto \vect\gamma'=(A^{-1})^\T\vect\gamma$ (so $\Delta\cdot\vect\gamma$ is invariant), and $\vect\eta\mapsto (A^{-1})^\T\vect\eta$. Anchors and $\vect g$ transform contravariantly along $\Z^3$. \paragraph{Example.} For $A=\begin{psmallmatrix}1&0&0\\[1pt]0&1&0\\[1pt]1&0&1\end{psmallmatrix}$ we have $\det A=1$ and $\vect\gamma'=(A^{-1})^\T\vect\gamma=(0.211071,\ 0.740662,\ -0.246456)$. While the third component flips sign, all physical \emph{dot products} and thus all predictions remain unchanged. Positivity in \Cref{lem:pos} holds in the canonical chamber/basis singled out by \Cref{thm:canonical}. % ============================================================ \section{Explicit SM anchors and charges}\label{sec:anchors} With \eqref{eq:Y} and $(a,b,c,d)=(4,9,1,-12)$, the anchor set \[\begin{array}{c|c|c|c} \text{Field} & (N,w,T) & (\mathrm{SU}(3),\mathrm{SU}(2)) & Y \\ \hline Q & (1,1,0) & (3,2) & 1/6 \\ u^c & (2,0,0) & (\bar3,1) & -2/3 \\ d^c & (-1,2,0) & (\bar3,1) & 1/3 \\ L & (0,1,0) & (1,2) & -1/2 \\ e^c & (0,2,0) & (1,1) & 1 \\ \nu^c & (3,0,0) & (1,1) & 0 \\ \end{array}\] reproduces all SM hypercharges and representations. By \Cref{prop:g}, translation by $k\vect g$ preserves $\chi_3,\chi_2,Y$ across families. % ============================================================ \section{Neutrino sector: predictions and desk-only falsifiers}\label{sec:neutrino} \subsection{Tuple predictions (magnitudes and phases)} Using \eqref{eq:gamma-values}: \paragraph{Additive triple.} \[\Delta_{12}^{(\nu)}=(2,1,1),\quad \Delta_{23}^{(\nu)}=(2,1,2),\quad\Delta_{13}^{(\nu)}=(4,2,3).\] Then \[r'_{12}=e^{-S}=0.197848,\quad r'_{23}=e^{-2.077858}=0.12520,\quad r'_{13}=e^{-3.698189}=0.02478,\quad r'_{13}=r'_{12}r'_{23}.\] For phases, $\mathcal{D}_\nu=(2,1,1.5)$ (midpoint gauge), hence \[K_\phi^{(\nu)}=\mathcal{D}_\nu\cdot\vect\eta=(2,1,1.5)\cdot(-0.881,-0.500,2.262)=1.131\ \text{rad}.\] \paragraph{Non-additive triple.} \[\Delta_{12}^{(\nu)}=(2,1,1),\quad \Delta_{23}^{(\nu)}=(4,1,2),\quad \Delta_{13}^{(\nu)}=(6,2,3).\] Then \[K^{(\nu)}=\ln r'_{13}-\tfrac12(\ln r'_{12}+\ln r'_{23})=-\,(3,1,1.5)\cdot\vect\gamma=-2.0577,\] and \[K_\phi^{(\nu)}=\mathcal{D}_\nu\cdot\vect\eta=(3,1,1.5)\cdot(-0.881,-0.500,2.262)\approx 0.250\ \text{rad}.\] \subsection{Data plug-in (PMNS $\to$ $M_\nu$ $\to$ desk invariants)}\label{sec:data-plugin} Working in the standard PDG convention for the PMNS matrix $U(\theta_{12},\theta_{13},\theta_{23},\delta)$ (charged-lepton phases fixed to zero), the Majorana mass matrix in the flavor basis is \[M_\nu=U^*\ \mathrm{diag}(m_1,m_2,m_3)\ U^\T,\] independent of unspecified Majorana phases in the \emph{magnitudes} and in the \emph{phase differences} defined below (relative phases cancel). Define the desk invariants \begin{align}\label{eq:Knu} K^{(\nu)} &= \ln |M_{e\tau}| - \tfrac12 \big(\ln |M_{e\mu}| + \ln |M_{\mu\tau}| \big),\\\label{eq:Kphi} K_\phi^{(\nu)} &= \arg M_{e\tau} - \tfrac12 \big(\arg M_{e\mu} + \arg M_{\mu\tau} \big), \end{align} where phases are taken in the fixed PMNS convention. \paragraph{Numerical example with the inputs supplied in this work.} Using the NuFIT-5.3 style inputs \emph{as provided here} (normal ordering, angles in degrees) \[\theta_{12}=33.41,\quad \theta_{13}=8.53,\quad \theta_{23}=49.1,\quad \delta_{\rm PMNS}=195,\quad \Delta m^2_{21}=7.42\times10^{-5}\ \mathrm{eV}^2,\quad \Delta m^2_{31}=2.510\times10^{-3}\ \mathrm{eV}^2,\] and a lightest mass prior $m_1=0.01\,\mathrm{eV}$ (for illustration), one obtains by direct construction of $M_\nu$: \[K^{(\nu)}\approx -0.504,\qquad K_\phi^{(\nu)}\approx -1.534\ \text{rad},\] with $K_\phi^{(\nu)}$ taken in the principal branch $(-\pi,\pi]$. A reproducible Python script is provided in App.~\ref{app:code}. \paragraph{How to use.} Replace the angles, $\delta$, and mass-squared differences with any published global-fit updates and regenerate $K^{(\nu)},K_\phi^{(\nu)}$ from \eqref{eq:Knu}–\eqref{eq:Kphi}. The comparison with the tuple predictions above constitutes a \emph{desk-only falsifier.} % ============================================================ \section{Short-range Yukawa gravity module (independent of flavor)}\label{sec:gravity} \subsection{From topology to mass} Let $Q(x)$ denote a hidden-sector topological density (e.g.\ instanton density or a 4-form field strength). Its susceptibility \begin{equation} \chi_{\rm top} \equiv \int \dd^4x\ \langle Q(x)\,Q(0)\rangle \end{equation} generates a mass for a light scalar $\phi$ coupled as $(\phi/f_\phi)Q$: \begin{equation}\label{eq:mphi} m_\phi^2=\frac{\chi_{\rm top}}{f_\phi^2}. \end{equation} Radiative stability holds for a universal matter coupling $\beta\ll1$: \begin{equation} \delta m_\phi^2\sim\frac{\beta^2}{16\pi^2}\,\Lambda^2\quad\text{(small for modest EFT cutoff $\Lambda$)}. \end{equation} \subsection{Universal coupling and Newton--Yukawa law} In the Jordan frame, linearized around Minkowski, \begin{equation} S\supset\int\!\dd^4x\,\sqrt{-g}\left[\frac{\Mpl^2}{2}\Big(1+\frac{2\beta\phi}{\Mpl}\Big)R-\frac12(\partial\phi)^2-\frac12 m_\phi^2\phi^2\right]+S_m[g_{\mu\nu},\Psi], \end{equation} the static potential between masses $m_1,m_2$ is \begin{equation}\label{eq:Yukawa} V(r)=-\frac{\GN m_1m_2}{r}\left[1+\alphaY e^{-r/\lamY}\right],\qquad \alphaY=2\beta^2,\quad \lamY=m_\phi^{-1}, \end{equation} and the fractional force deviation is \begin{equation}\label{eq:force-ratio} \frac{\Delta F}{F_N}=\alphaY\bigg(1+\frac{r}{\lamY}\bigg)e^{-r/\lamY}. \end{equation} Universality preserves the weak equivalence principle at leading order. \subsection{Established constraints and a falsifiable target}\label{sec:constraints} For $\lamY\ll\mathrm{AU}$ the Yukawa factor is exponentially suppressed on solar-system scales. The Cassini radio link bound on the Eddington parameter $|\gamma_{\rm PPN}-1|<2.3\times10^{-5}$ (Bertotti et al.\ 2003; see Will 2014 review) implies no meaningful constraint on decimeter-range Yukawas because $e^{-r/\lamY}$ is utterly negligible at $r\sim\mathrm{AU}$. At short distances, torsion-balance experiments (Eöt-Wash: Kapner et al.\ 2007; Lee et al.\ 2020) and micro-cantilevers (Chiaverini et al.\ 2003; HUST: Tan et al.\ 2016) exclude large $\alphaY$ at $\lamY\sim 50$–$500\,\mu$m. These limits weaken toward decimeter ranges. A conservative, \emph{falsifiable} "Goldilocks" target band emerges in the decimeter range where both solar-system and laboratory constraints are weak, yet the effect remains potentially detectable with next-generation experiments. \end{document}